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Abstract. We show that the low-energy physics of the three-leg-ladder model in the presence of
a critical magnetic field can be described by a broken SU(3) spin chain for a periodic rung model
and a broken SU(2) spin chain for an open rung model. Using the Lieb–Schultz–Mattis theorem
we characterize the possible magnetization plateaus and study the critical behaviour in the region
of transition between the plateaus 〈Sz〉 = 1/2 and 〈Sz〉 = 3/2 by means of renormalization group
calculations performed on the bosonized effective continuum field theory. We show that in certain
regions of the parameter space of the effective theory the system remains gapless, and we compute
the spin–spin correlation functions for these regions. We also discuss the possibility of a plateau
at 〈Sz〉 = 1, and show that although there exists in the continuum theory a term that might cause
the appearance of a plateau there, such a term is unlikely to be relevant. This conjecture is proved
by density-matrix renormalization group (DMRG) techniques. The modifications of the three-leg-
ladder Hamiltonian that show plateaus at 〈Sz〉 = 1, 5/6, 7/6 are discussed. We show the 〈Sz〉 = 1
plateau in the XXZ-type modification by means of the DMRG technique. We find non-magnetic
gapless excitation on this plateau in the periodic rung case.

1. Introduction

One-dimensional and quasi-one-dimensional quantum spin systems have attracted much
attention in recent years due to the large number of experimental realizations of such systems
and the variety of theoretical techniques, both analytical and numerical, available for studying
the relevant models. Due to the presence of large quantum fluctuations in low dimensions, these
systems present unusual properties such as a gap between a singlet ground state and excited
non-singlet states. Examples include spin-ladder systems in which a small number of one-
dimensional spin-1/2 chains interact among themselves [1]. In this case, in a way very similar
to that in the Haldane spin-S problem [2], it has been found that if the number of chains is even,
the system effectively behaves as an integer-spin chain with a gap in the low-energy spectrum,
while it remains massless for an odd number of chains. Some two-chain ladders which exhibit
a gap are SrCu2O3 [3] and Cu2(C5H12N2)2Cl4 [4], and an example of a gapless three-chain
ladder is Sr2Cu3O5 [3]. Thus far we have implicitly assumed that the boundary conditions
in the transverse direction are open boundary conditions (OBC). These boundary conditions
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correspond to having all the chains lying in the same plane. This is the situation encountered in
experimental systems such as Sr2Cu3O5. In contrast with OBC, periodic boundary conditions
(PBC) are frustrating for (2n+1) coupled spin chains. As a consequence all the spin excitations
are gapped [5, 6] in the case of periodic boundary conditions. They are also gapped for 2n
coupled spin chains with PBC but the mechanism is related to singlet formation as in the OBC
case and not frustration. The PBC could be achieved in an experimental system by having the
coupled chains forming a cylinder instead of lying in a plane.

A richer behaviour emerges when these gapped or ungapped systems are placed in a
magnetic field. Then it is possible for an integer-spin chain to be gapless and a half-odd-integer-
spin chain to show a gap above the ground state for certain values of the field [7–10]. This has
been demonstrated by several methods such as bosonization [5, 11], perturbation theory [12],
and the density-matrix renormalization group method (DMRG) [13–15]. In particular, it has
been shown that spin-1/2 chains and ladders with a gap undergo continuous phase transition
from a commensurate zero-uniform-magnetization phase to an incommensurate phase with
non-zero magnetization [10], and the magnetization of the system can exhibit plateaus at
certain non-zero values of the magnetic field [8, 16]. Furthermore, a striking property of
the quantum spin chains in a uniform magnetic field pointing along the direction of the
axial symmetry (the z-direction) is the topological quantization of the magnetization under
a changing of the magnetic field [7]. It was shown, starting from a generalized Lieb–Schultz–
Mattis (LSM) theorem [17], that translationally invariant spin chains in an applied field can
be gapful without breaking translational symmetry only when the magnetization per spin,
m, obeys S − m = integer, where S is the maximum possible spin in each unit cell of the
Hamiltonian [7–9]. Such gapped phases correspond to plateaus at these quantized values ofm.
In reference [18] the behaviour of the magnetization versus magnetic field has been investigated
in detail using DMRG techniques for three coupled spin-1/2 chains with both periodic and open
boundary conditions. Plateaus have been obtained at m = 1/2 and m = 3/2 in agreement
with reference [7]. Furthermore, for the case of PBC a small plateau at m = 0 was also
obtained [9, 15, 18]. Finally, there seems to exist some weak evidence for a plateau at m = 1
for PBC [18]. Strong-coupling low-energy Hamiltonians for these two systems were also
derived in reference [18].

In this paper, we investigate a three-leg ladder with PBC (spin tube) and with OBC in
the presence of a uniform magnetic field by using bosonization and renormalization group
techniques. We are concerned with the transition region between the magnetization plateaus at
m = 1/2 andm = 3/2. Our analysis is based on the low-energy effective Hamiltonian (LEH)
derived for strong coupling between the rungs [18]. We identify the LEH as an anisotropic
SU(3) spin chain with symmetry-breaking terms in a longitudinal magnetic field, and analyse its
low-energy physics via bosonization and RG techniques. This approach allows us to predict
the behaviour of the spin–spin correlation functions in this transition region and the NMR
relaxation rate. This also allows an investigation of the possibility of a non-trivial plateau
at m = 1. In the XXZ three-leg-ladder model, we show a plateau at m = 1. In the PBC
case, there is a non-magnetic gapless excitation. In the OBC case, the excitations are all
gapped.

The paper is organized as follows. In section 2, we recall the derivation [18] of the LEH
and reduce it to an anisotropic SU(3) spin chain, while that for the OBC ladder reduces to
an anisotropic SU(2) spin chain. The difference between PBC and OBC models becomes
obvious in the language of effective Hamiltonians. We review briefly the analysis of the
magnetization process of the isotropic SU(3) spin chain, and discuss the possibility of a cusp
in the magnetization process of the three-leg ladder with OBC. The bosonized Hamiltonian
is derived in section 3. In section 4, we analyse the low-energy effective Hamiltonian in a
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weak-coupling limit by calculating the one-loop renormalization group (RG) in the marginally
perturbed SU(3) Wess–Zumino–Witten model [19] and discuss the renormalization group
flow. For weak coupling, the flow is to an invariant surface, leading to gapless excitations
above the ground state with no breaking of the discrete symmetry. On the basis of the weak-
coupling renormalization group analysis and the usual continuity between weak coupling and
strong coupling in one-dimensional systems, we claim that the spin tube is described by a
two-component Luttinger liquid at low energy and long wavelength. In section 5, we discuss
the effect of a variation of the magnetic field in that problem, and show that it does not affect
the two-component Luttinger liquid behaviour. We discuss the analogy of this two-component
Luttinger liquid with the S2 phase of the bilinear–biquadratic spin-1 chain [20]. Then,
having established the equivalence with the two-component Luttinger liquid, we calculate
the spin-correlation functions in the critical region and the temperature dependence of the
NMR longitudinal relaxation rate T −1

1 . We also present a theoretical description of the plateau
at m = 1 in the framework of bosonization. Comparing this description with the numerical
results of reference [18] we conclude that the presence of a plateau at m = 1 is unlikely in
the spin tube. We verify our results on the absence of plateaus at m = 1 using DMRG theory,
and indicate the XXZ modifications of the three-leg-ladder Hamiltonian that could lead to
a plateau. Section 6 contains the concluding remarks. Technical details can be found in the
appendices.

2. The low-energy effective Hamiltonian of the spin tube

The Hamiltonian of the three-chain ladder with periodic boundary conditions (PBC) in the
presence of an external magnetic field is

H = J

N∑
i=1

3∑
p=1

�Si,p · �Si+1,p + J⊥
N∑
i=1

3∑
p=1

�Si,p · �Si,p+1 − �h ·
N∑
i=1

3∑
p=1

�Si,p (2.1)

where p (i) is a chain (site) index, J is the coupling along the chain, J⊥ is the transverse
coupling, and the site (i, 4) is identified with the site (i, 1). The three-chain ladder with
periodic boundary conditions can be viewed as forming a tube with an equilateral triangular
cross section (see figure 1). We will refer to this system as a spin tube.

J

J

J J

Figure 1. The cylindrical three-leg ladder (spin tube). The choice of the topology affects the
strong-coupling limit.

In the rest of the paper we shall consider the model for J⊥ � J , and the aim of this
section is to recall briefly the derivation of the low-energy Hamiltonian [18] in this limit. To
begin with, for J = 0, the system consists of independent rungs. The eight states of a given
rung fall into a spin-3/2 quadruplet and two spin-1/2 doublets. In the absence of a magnetic
field, the spin-3/2 states on a given triangle are all degenerate with energy (3/4)J⊥. These
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states are
|3/2; 3/2〉 = |↑↑↑〉
|3/2; 1/2〉 = 1√

3
[|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉]

|3/2; −1/2〉 = 1√
3

[|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉]

|3/2; −3/2〉 = |↓↓↓〉.

(2.2)

Also, in the absence of a magnetic field and on a given rung, the two spin-1/2 doublets,
corresponding to the left and right chiralities (−/+), are degenerate with energy −(3/4)J⊥.
These states are

|↑+〉 = 1√
3

[|↓↑↑〉 + j |↑↓↑〉 + j 2|↑↑↓〉]

|↓+〉 = 1√
3

[|↑↓↓〉 + j |↓↑↓〉 + j 2|↓↓↑〉]

|↑−〉 = 1√
3

[|↓↑↑〉 + j 2|↑↓↑〉 + j |↑↑↓〉]

|↓−〉 = 1√
3

[|↑↓↓〉 + j 2|↓↑↓〉 + j |↓↓↑〉]

(2.3)

where j = exp(2π i/3).
When an external magnetic field is switched on, the degeneracy in the different multiplets

is lifted. The energy levels of the state |↑↑↑〉 (in the spin-3/2 multiplet) and the spin-1/2 states
|↑+〉, |↑−〉 cross at hc = 3

2J⊥ (see figure 2). As a result, for h < hc, one has a ground-state
magnetization 〈Sz〉 = 1/2, and for h > hc, 〈Sz〉 = 3/2, i.e. hc is a transition point between
two magnetization plateaus. If a small coupling J is turned on, this transition is expected to
broaden between h1/2,+ and h3/2,−, where h3/2,− − h1/2,+ is of the order of J . We expect that
in this interval 〈Sz〉 will increase continuously with h. In this limit the properties of the system
can be studied by perturbing with H1 around the decoupled rung Hamiltonian H0:

H = H0 +H1 (2.4)

H0 = J⊥
N∑
i=1

3∑
p=1

�Si,p · �Si,p+1 − hc

N∑
i=1

3∑
p=1

Szi,p (2.5)

H1 = J

N∑
i=1

3∑
p=1

�Si,p · �Si+1,p − (h− hc)

N∑
i=1

3∑
p=1

Szi,p. (2.6)

At h = hc the ground state of H0 is 3N -fold degenerate, the states |↑−〉i , |↑+〉i , |↑↑↑〉i
(to be denoted respectively as |1̃〉i , |2̃〉i , |3̃〉i) spanning the low-energy subspace. H1 lifts the
degeneracy in the subspace, leading to an effective Hamiltonian that can be derived by standard
perturbation theory. Since in the truncated subspace there are three states per triangle, it is
natural to express the spin operators in the basis given by Gell-Mann matricesλα, α = 1, . . . , 8.
(The conventions that we use for the matrices can be found for instance in references [21]
and [22].) By considering the action of the spin operators S+

1,2,3 and Sz1,2,3 on each state of the
truncated Hilbert space, the spin operators can be expressed in terms of the matrices as

S+
i,p = 1

2
√

3
[jp−1(λ6

i + iλ7
i ) + j 2(p−1)(λ4

i − iλ5
i )] (2.7)

Szi,p = 1

3

[
5

6
I − λ8

i√
3

− j 2(p−1)(λ1
i + iλ2

i )− j (p−1)(λ1
i − iλ2

i )

]
. (2.8)
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-3/4J⊥

3/4J⊥

S
z=3/2

S
z

=1/2

h

E

Figure 2. The energy levels of a single triangle as a function of the magnetic field. Solid lines
correspond to states with S = 3/2, dashed lines to states with S = 1/2. One observes the level
crossing between the state with Sz = 3/2 and the states with S = 1/2, Sz = 1/2 as the magnetic
field is increased.

where I is the identity matrix. The total rung spin is given by

Szi =
(

5

6
I − λ8

i√
3

)
. (2.9)

The effective Hamiltonian to first order then becomes

Heff = H̃0 + H̃I (2.10)

H̃0 = J

4

N∑
i=1

8∑
α=1

λαi λ
α
i+1 (2.11)

H̃I = q

N∑
i=1

[λ1
i λ

1
i+1 + λ2

i λ
2
i+1] + u

N∑
i=1

λ3
i λ

3
i+1 + u′

N∑
i=1

λ8
i λ

8
i+1 +

heff√
3

N∑
i=1

λ8
i . (2.12)

In our case, q = −J/12, u = −J/4, u′ = −5J/36, and heff = h− hc − 5J/9; hereafter we
choose our units such that J = 1. The Hamiltonian (2.10) is written as an isotropic SU(3) spin
chain H̃0 and terms H̃I that break the symmetry. This form will be convenient later on when
we study such questions as what regions of parameter space are gapless and the behaviour of
correlations functions there.

Another form of the Hamiltonian is convenient when one wishes to study the plateau
structure. We introduce [18] a different basis of SU(3) operators T ±

1 , T ±
2 , T ±

3 , and T z defined
by

T ±
1 = (λ1 ± iλ2)/2 (2.13)

T ±
2 = (λ4 ± iλ5)/2 (2.14)
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T ±
3 = (λ6 ± iλ7)/2 (2.15)

T z = −2
λ8√

3
. (2.16)

Then, to first order, and up to a constant, the effective Hamiltonian reads

Heff = J

2

∑
i

[T +
i,2T

−
i+1,2 + T −

i,2T
+
i+1,2 + T +

i,3T
−
i+1,3 + T −

i,3T
+
i+1,3]

+
J

3

∑
i

[T +
i,1T

−
i+1,1 + T −

i,1T
+
i+1,1] +

J

12

∑
i

T zi T
z
i+1

−
(

1

2
h− 3

4
J⊥ − 5

18
J

)∑
i

T zi . (2.17)

This is the Hamiltonian derived in reference [18]. In this form the underlying structure of
an anisotropic SU(3) spin chain in a ‘λ8 magnetic field’ is unexploited. The correspondence
between our notation and that of reference [18] can be found in table 1.

Table 1. The correspondence between the notation of the present paper and that of Tandon et al.

States

Present paper |1̃〉 |2̃〉 |3̃〉
Tandon et al j |7′〉 j2|5′〉 |1〉

Operators

Present paper T +
1 T +

2 T +
3 T z + 1/3

Tandon et al j2τ− jL− j2R− σz

The form of the Hamiltonian (2.10) may help in relating our model to integrable versions
of the SU(3) spin chains. Isotropic spin chains are known to be integrable by Bethe ansatz
techniques [23, 24]. The magnetization process of SU(3) spin chains with a magnetic field
coupled to λ3 or λ8 has been analysed in the context of the bilinear–biquadratic spin-1 chain
at the integrable Uimin–Lai–Sutherland point [25–27] by solving numerically the Bethe
ansatz equations. There exist also integrable anisotropic SU(3) spin chains [28], but the
chain described by the Hamiltonian (2.10) is not one of them. On the basis of the results
already known and some simple arguments, we can however obtain a qualitative picture of
the magnetization process. First, by applying a straightforward generalization of the Lieb–
Schultz–Mattis theorem to the SU(3) chains to the effective Hamiltonian equation (2.6), one
can show that the magnetization plateaus predicted using the effective Hamiltonian (2.6) are
identical to those predicted using the original Hamiltonian of the spin tube. In the study
of the magnetization process of an isotropic SU(3) chain in reference [25, 26] a cusp in the
magnetization process was found for a critical magnetic field. Such a cusp is not related
to plateau formation. One may thus wonder whether a cusp could also be obtained in the
magnetization process of the chain described by Hamiltonian (2.17). However, it is important to
stress that in references [25,26], the magnetic field was coupled toλ3, and the cusp resulted from
the emptying of the band of excitations carrying λ3 = −1 for large enough field. In the case
that we investigate, the field is coupled to λ8. Studies of the magnetization process [27] with
a magnetic field coupled to λ8 showed no such cusp in the curve of 〈λ8〉 versus h. The reason
for this is that the elementary excitations have respective chemical potentials −h,−h, 2h, so
no band can become empty before a fully polarized state is reached. By analogy with the latter
case, we should not expect any cusp in the magnetization process of the system described by



Effective theory of magnetization plateaus 3047

Hamiltonian (2.17). As a result, we expect the magnetization plateaus obtained in the study of
the magnetization process of the Hamiltonian (2.17) to be those of the SU(3) spin chain and
that no cusp should appear in the magnetization process.

To make more detailed statements on the plateau formation and the spin–spin correlation
functions of the ladder we will have to resort to a combination of approximate methods such
as bosonization and renormalization group techniques. This is the object of section 3.

We conclude this section by contrasting the open and periodic boundary conditions. The
same strong-coupling analysis can be done for the OBC case. In contrast with the PBC case,
we have only a twofold degeneracy instead of a threefold one at J = 0 under a strong field
h = 7J⊥/8. These two low-energy states are

|3/2; 3/2〉 = |↑↑↑〉

|1/2; 1/2〉 =
√

2

3

(
1

2
|↑↑↓〉 +

1

2
|↓↑↑〉 − |↑↓↑〉

)
.

(2.18)

The effective Hamiltonian to first-order perturbation in J/J⊥ becomes the well known spin-1/2
XXZ model:

Heff = J

4

∑
i

(σ xi σ
x
i+1 + σyi σ

y

i+1 +%σzi σ
z
i+1)−

(
h

2
− 7J⊥

16

)∑
i

σ zi (2.19)

where % = 5
18 . It is well known that this Hamiltonian has no gap for % � 1 except at the

saturated magnetization σ z = ±1, which corresponds to m = 1/2, 3/2 in the original ladder
model. This agrees with a weak-coupling analysis (J � J⊥) based on bosonization [5, 9].
In the strong-coupling analysis, one can clearly see the difference between PBC and OBC in
their effective Hamiltonian.

3. Bosonization and weak-coupling analysis

We proceed now to study the long-distance properties of the effective HamiltonianHeff defined
in equation (2.10). It is a sum of an isotropic SU(3) spin-chain Hamiltonian plus SU(3)-
symmetry-breaking terms:

Heff = H̃0 + H̃1 + H̃2 + H̃3 + H̃h (3.1)

with

H̃0 = J

4

N∑
i=1

∑
α=1,...,8

λαi λ
α
i+1 (3.2)

H̃1 = q

N∑
i=1

[λ1
i λ

1
i+1 + λ2

i λ
2
i+1] (3.3)

H̃2 = u

N∑
i=1

λ3
i λ

3
i+1 (3.4)

H̃3 = u′
N∑
i=1

λ8
i λ

8
i+1 (3.5)

H̃h = heff

N∑
i=1

λ8
i√
3
. (3.6)

In our case, q = −(1/12)J , u = −(1/4)J , u′ = −(5/36)J , and heff = (h− hc)/2 −
(5/18)J ; hereafter we choose our units such that J = 1.
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3.1. Non-Abelian bosonization of an SU(3) spin chain

The SU(3)-invariant Hamiltonian H̃0 can be solved exactly by the Bethe ansatz [23, 24]. The
solution shows that the SU(3) spin chain has two branches of excitations, with dispersion

εj (k) = J

4

2π

sin(πj/3)
[cos(πj/3 − |k|)− cos(πj/3)] j = 1, 2.

These excitations are gapless, and for |k| → 0, one has

ε1(k) = ε2(k) � 2π

3

J

4
|k|

i.e. the dispersion relation assumes at long wavelength a massless relativistic form. Acc-
ordingly, the low-energy, long-wavelength excitations of the SU(3) spin chain can be
bosonized. More precisely, these excitations are described [29, 30] by the SU(3) level-1
(SU(3)1) Wess–Zumino–Novikov–Witten (WZNW) model [31], perturbed by a marginally
irrelevant SU(3)-invariant operator. A review of WZNW models can be found in reference [32].
In Hamiltonian form, the SU(3)1 model can be written as

HWZNW = 2π

3

32−1∑
a=1

:J aR(x)J
a
R(x): + :J aL(x)J

a
L(x): (3.7)

where the right and left currents satisfy the following commutation relations (Kac–Moody
algebra at level 1):

[J αR (L), J
β

R (L)] = if αβγ δ(x − y)J
γ

R (L)(y) +
iδαβ
2π

δ′(x − y). (3.8)

In equation (3.8), the f αβγ are the structure constants of SU(3). The central charge is
C = 1 × (32 − 1)/(3 + 1) = 2, indicating that the SU(3)1 WZNW model can be described
in terms of two free-bosonic fields. As mentioned above, the SU(3) spin chain is described
asymptotically by the SU(3)1 model perturbed by a marginally irrelevant SU(3)-invariant term:

H → HWZW + g0

∫
dx

2π
.0(x) (3.9)

where the marginal operator

.0(x) =
3∑

α=1

J αR(x)J
α
L (x)

couples the right and left currents.
The finite-size correction to the ground-state energy of the SU(3) chain can be obtained

from the Bethe ansatz solution. These corrections are logarithmic and are in agreement
with those obtained from the continuum Hamiltonian (3.9). This situation is very similar
to the more familiar case of the SU(2) spin chain, which is described at low energy and
long wavelength by the marginally perturbed SU(2)1 WZNW model [33]. In general, the
magnitude of g0 cannot be obtained from the lattice Hamiltonian in the case of an SU(N)
spin chain (see the discussion of the case of N = 2 in reference [33]). This is even more
problematic when one adds perturbations to the SU(3)-invariant spin chain. Another difficulty
is that these perturbations are not small in our case and strictly speaking cannot be treated
in perturbation theory. However, in one dimension weak- and strong-coupling behaviour are
often continuously connected [34–37], so a weak-coupling analysis can provide very valuable
information on the qualitative physics for strong coupling. Therefore, if we can find a weak-
coupling model that is described by the marginally perturbed SU(3)1 WZNW model and if
we add to it small perturbations of the form (3.3)–(3.5), we will be able to make a reasonable
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guess at the low-energy, long-wavelength continuum theory associated with the Hamiltonian
Heff . By analogy with the Heisenberg model, we expect the difference between the weak- and
the strong-coupling regime to reduce to a renormalization of some parameters of the effective
low-energy theory. For non-integrable models, these parameters can be obtained numerically
by calculating thermodynamic quantities via exact-diagonalization methods [38–40].

In our case, it is not difficult to see that the spin sector of the SU(3)Hubbard model [30,41]
is a good candidate for a weak-coupling model. This model is defined by the Hamiltonian

H = −t
∑

i,n=1,2,3

(c
†
i+1,nci,n + h.c.) + U

∑
i,n �=m

ni,nni,m (3.10)

where ci,n annihilates a fermion of flavour n ∈ [1, 2, 3] at site i, and ni,n = c
†
i,nci,n. The basic

idea is that, starting from the lattice Hamiltonian of the SU(3) Hubbard model, it is possible
to take the continuum limit and then separate the spin excitations from the charge excitations
by means of weak-coupling bosonization. In the strong-coupling limit, U → ∞, a constraint
of one fermion per site is imposed:∑

n

c
†
i,nci,n = 1. (3.11)

With one fermion per site, the charge degrees of freedom are frozen out and one is left just
with SU(3) spin degrees of freedom.

Second-order perturbation theory in t then shows that the model can be mapped onto an
isotropic SU(3) spin chain with the lattice SU(3) spin operators

1α
i =

∑
n,m

c
†
i,mλ

α
n,mci,n (3.12)

under the constraint (3.11). Under the hypothesis of continuity, the same SU(3)1 field theory
should describe the weak- and strong-coupling limits in the spin sector. The difference between
the weak- and strong-coupling limits corresponds to the disappearance of the charge sector.
This reduction of the number of degrees of freedom can be obtained in a consistent way by
treating the constraint (3.11) within the effective theory [42, 43].

Thus, our strong-coupling theory is the spin sector of the SU(3) Hubbard model with a
filling of one fermion per site and U → ∞. Let us discuss the weak-coupling regime. The
constraint (3.11) sets the Fermi momentum at kF = π/3 for the three fermion flavours. Since
we are interested in low-energy, long-wavelength properties, we linearize the spectrum for
each flavour around the two Fermi points and introduce the right- and left-moving fermion
modes in the continuum limit:

c
†
i,n � √

a(eikF xψ
†
L,n(x) + e−ikF xψ

†
R,n(x)) (3.13)

where x = ia and a is the lattice spacing.
For U = 0, the linearized Hamiltonian is

Hlinearized = −ivF
∑
n

∫
dx (ψ†

R,n ∂xψR,n − ψ
†
L,n ∂xψL,n). (3.14)

This Hamiltonian is conformally invariant and can be rewritten in terms of the right and left
charge currents

JR (L) =
∑
n

ψ
†
R (L),nψR (L),n

and the eight SU(3) spin currents (right and left)

J aR (L) =
∑
n

ψ
†
R (L),n

λan,m

2
ψR (L),m.
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One thus separates the charge and spin sectors:

H = Hcharge +Hspin (3.15)

where the charge sector is

Hcharge = vF

∫
dx :JR(x)JR(x): + :JL(x)JL(x): (3.16)

and the spin sector is again described by the SU(3)1 model discussed earlier:

Hspin = vF
∑
a

∫
dx :J aR(x)J

a
R(x): + :J aL(x)J

a
L(x):. (3.17)

The charge currents satisfy U(1) Kac–Moody algebra, whereas the spin currents satisfy
the SU(3)1 Kac–Moody algebra as can be checked explicitly. When the interaction is weakly
turned on, U/t � 1, it does not break spin–charge separation but induces a g0 ∝ U term [30].

We have discussed thus far non-Abelian bosonization in order to stay close to the literature
on SU(3) spin chains. However, an Abelian bosonization approach to the isotropic SU(3) spin
chains starting from the SU(3) Hubbard model is perfectly feasible. Such an approach has
been introduced for isotropic SU(N) spin chains in reference [41]. It is outlined in appendix A.
In fact, for the rest of this section, we shall employ Abelian bosonization because it renders
the calculation of correlation functions extremely easy even when the SU(3) symmetry is
explicitly broken.

3.2. The Abelian bosonization approach

Abelian bosonization gives the following Hamiltonian for an SU(3)-invariant spin chain (or
the spin sector of the SU(3) Hubbard model):

HSU(3) =
∫

dx

2π
u
[
(π6a)

2 + (π6b)
2 + (∂xφa)

2 + (∂xφb)
2
]

+
2Ua

(2πa)2

∫
dx (cos

√
8φa + cos

√
2(φa +

√
3φb) + cos

√
2(φa −

√
3φb))

− Ua

∫
dx

π2

[
(∂xφa)

2 + (∂xφb)
2
]
. (3.18)

A derivation can be found in appendix A. The free term corresponds to equation (3.17).
Under renormalization, HSU(3) flows to a fixed-point Hamiltonian [41]:

H ∗ =
∫

dx

2π
u∗ [(π6a)

2 + (π6b)
2 + (∂xφa)

2 + (∂xφb)
2
]

(3.19)

where u∗ is given by the Bethe ansatz as u∗ = (2π/3)J/4. One can check using expressions
(A.12) that this leads to a scaling dimension of 1 for the uniform component of 1α(x) �
a−11α

i , x = ia (α = 1, . . . , 8), and 2/3 for the 2π/3 component (see equation (A.12)). These
scaling dimensions coincide with those obtained from non-Abelian bosonization [29, 41].

Turning now to the SU(3)-symmetry-breaking terms, we find that in the Abelian boson-
ization representation they take the following form:

H̃1 =
∫

dx

π2

[
−qa

4
(π6a)

2 − qa

2
(∂xφa)

2 +
qa

12
(∂xφb)

2
]

+
2qa

(2πa)2

∫
dx cos

√
8φa +

√
3qa

(2π)2

∫
dx ∂xφb (3.20)
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H̃2 =
∫

dx

π2

[
5ua

2
(∂xφa)

2 +
ua

6
(∂xφb)

2

]
+

2ua

4(πa)2

∫
dx cos(

√
8φa) +

∫
dx

√
3u

(2π)2
∂xφb

(3.21)

H̃3 =
∫

dx

π2

[
u′a
6
(∂xφa)

2 +
5u′a

2
(∂xφb)

2

]
− 2u′a

3(2πa)2

∫
dx cos(

√
8φa)

− 4u′a
3(πa)2

∫
dx cos

√
2φa cos

√
6φb +

u′√2

3π2

∫
dx ∂xφb (3.22)

H̃h = −(h− hc)

∫
dx

√
2

π
(∂xφb).

The physical interpretation of the terms proportional to ∂xφb is very simple. The bosonized
Hamiltonian is derived under the assumption that the magnetization per triangle is close to
5/(6a). When the magnetization per triangle is exactly 5/(6a) the terms ∂xφb do not appear
in the Hamiltonian. Therefore, the presence in the Hamiltonian of such terms means that the
magnetic field needed to impose a magnetization of 5/(6a) per triangle is renormalized away
from its bare value. Also, since the Hamiltonian preserves the symmetry between + and −
chiralities, it is invariant under the transformation πa → −πa , φa → −φa . In particular, this
precludes the terms ∂xφa from appearing in the Hamiltonian.

Assembling all terms, we finally have the following field theory describing the spin sector
of the SU(3) Hubbard model in the presence of symmetry-breaking perturbations:

H = vF
∑
i=a,b

∫
dx

2π
[(π6i)

2 + (∂xφi)
2] + +

2g1

(2πa)2

∫
dx cos

√
8φa(x)

+
4g2

(2πa)2

∫
dx cos

√
2φa(x) cos

√
6φb(x) +

g4

π2

∫
dx (∂xφa)

2

+
g5

π2

∫
dx (∂xφb)

2 +
h

π

∫
dx ∂xφb (3.23)

with

vF = 2ta sin(kF a) =
√

3ta

h =
(√

3

4π
u +

√
2

3π
u′ +

√
2

2π
q

)

and t the hopping amplitude. In our units, t = 1.
The notation can be made more compact by introducing the vectors

�φ = (φa, φb)

and

�α1 = (1, 0) �α2 = (1/2,
√

3/2) �α3 = (1/2,−
√

3/2)

where

Ka =
[(

1 − qa

2πvF

)/(
1 − Ua

πvF
− qa

πvF
+
u′a

3πvF
+

5ua

πvF

)]1/2

ua = vF

[(
1 − qa

2πvF

)(
1 − Ua

πvF
− qa

πvF
+
u′a

3πvF
+

5ua

πvF

)]1/2
(3.24a)
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Kb =
(

1 − Ua

πvF
+

5u′a
πvF

+
ua

3πvF
+

qa

6πvF

)−1/2

ub = vF

(
1 − Ua

πvF
+

5u′a
πvF

+
ua

3πvF
+

qa

6πvF

)1/2

.

(3.24b)

The Hamiltonian can then be rewritten† as

H =
∫

dx

2π

[
uaKa(π6a)

2 +
ua

Ka

(∂xφa)
2 + ubKb(π6b)

2 +
ub

Kb

(∂xφb)
2

]

+
3∑
i=1

2gi
(2πa)2

∫
dx cos(

√
8�αi · �φ)

The interactions (∂xφa,b)2 can render the marginal operators cos(
√

8φa), cos(
√

2φa ± √
6φb)

marginally relevant and cause the opening of a gap. In such a case, the low-energy properties
of the system cannot be described by two massless bosons. One can have either a massive and
a massless boson or two massive bosons. This depends on the coupling constants u, u′, m,
q, and the magnetic field h. In order to explore this possibility in more detail, one has to use
renormalization group equations. This is the subject of the forthcoming sections.

4. The renormalization group flow in zero magnetic field

In this section, we discuss the flow of the renormalization group equation and the phase
diagram that results from it. Qualitatively, the renormalization group equations are similar
to the Kosterlitz–Thouless renormalization group equations [44, 45]. We expect therefore to
obtain a gapless phase corresponding to the flow to a fixed hypersurface of the six-dimensional
space of coupling constants and one (or possibly many) gapped phase where the coupling
constants flow to infinity. We also expect the phase transition to be of infinite order [44]. Our
task is therefore to determine the initial conditions and follow the flow. This will allow us to
conclude on the nature of the ground state of the anisotropic SU(3) chain.

A straightforward application to the Hamiltonian (3.23) of the standard method [45, 46]
would be inconvenient since one needs to expand to third order of correlation functions in
order to get the full one-loop RG equations [47]. We will use instead operator product exp-
ansion (OPE) techniques [48, 49]. In our case, the algebra of operators (∂xφa)2, (∂xφb)2, and
cos(

√
8�αi · �φ) closes under OPE (for details see appendix B). In particular,

cos(
√

8�α · �φ(x, τ )) cos(
√

8�α · �φ(0, 0))

� −2a4

(x2 + (uτ)2)2

[ ∑
p=a,b

(α
p

i )
2(x2(∂xφp)

2 + τ 2(∂τφp)
2 + 2xτ ∂xφp ∂τφp)

]

cos(
√

8�α · �φ(x, τ )) cos(
√

8 �β · �φ(0, 0))

� 1

2

[(
a2

x2 + (uτ)2

)−K �α· �β
cos

√
8(�α + �β) · �φ(0, 0)

+

(
a2

x2 + (uτ)2

)K �α· �β
cos

√
8(�α − �β) · �φ(0, 0)

]

† It is interesting to note that a similar Hamiltonian enters in the theory of two-dimensional melting (see equation (3.16)
in reference [47]).
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lead to the following RG equations (see appendix B):

dy1

dl
= 2y1y4 − y2

2/2

dy2

dl
= ( 1

2y4 + 3
2y5)y2 − y1y2/2

dy4

dl
= y2

1/2 + y2
2/4

dy5

dl
= 3

4y
2
2

(4.1)

where we have used the notation yi = gi/πvF , with vF the Fermi velocity. Note that
(g1, g2) = (0, 0) is a fixed surface, because of three truly marginal operators, ∂xφa ∂xφb,
(∂xφa)

2, and (∂xφb)2.
An alternative approach based on non-Abelian bosonization can be used. In this approach,

after expressing the Hamiltonian in terms of products of right- and left-moving currents J aRJ
a
L ,

an operator product expansion for currents is derived [50]. Such an approach leads to the same
RG equations as the Abelian bosonization approach.

The initial values of the running coupling constants (at the cut-off scale a) for the spin
sector of the SU(3) Hubbard model perturbed by H̃1,2,3 are given by

y1(a) = g1(a)

πvF
=
(
Ua + qa − u′a

3
+ ua

)/
πvF

y2(a) = g2(a)

πvF
=
(
Ua +

u′a
3

)/
πvF

y4(a) = g4(a)

πvF
=
(

−Ua
2

+
5ua

2
+
qa

2
+
u′a
6

)/
πvF

y5(a) = g5(a)

πvF
=
(

−Ua
2

+
ua

6
+

5u′a
2

+
qa

12

)/
πvF .

(4.2)

In the expression for the initial coupling constants (4.2) we have u = −J/4, q = −J/12,
u′ = −5J/36, and we assume J,U � t . Hereafter, we choose J = 4 and put vF equal to
unity; thus the numerical starting values are given by

y1 = −0.365 467 + y0

y2 = −0.058 9463 + y0

y4 = −0.878 299 − y0/2

y5 = −0.503 9907 − y0/2.

(4.3)

Here y0 ∝ U . These values are not small, so the one-loop RG equations are not valid. However,
numerically solving these RG equations with initial conditions (4.3) shows that they flow to a
fixed point on the surface (g1, g2) = (0, 0) for any y0 ∈ [0, 1] (see figures 3 and 4). At this
fixed point, one has a renormalized Hamiltonian with

H =
∫

dx

2π

[
u∗
aK

∗
a (π6a)

2 +
u∗
a

K∗
a

(∂xφa)
2 + u∗

bK
∗
b (π6a)

2 +
u∗
b

K∗
b

(∂xφa)
2

]
. (4.4)

This proves that certainly for weak coupling the long-distance properties of the system are
described by a two-component Luttinger liquid. For strong coupling, i.e. in the case of the
spin tube, this is only an indication that the two-component Luttinger liquid is possible. In
order to give a definitive proof, one should prove that there is no singularity in the ground-state
energy as couplings increase.
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Figure 3. The renormalization group flow with initial conditions (4.3) and y0 = 0. The coupling
constants g1, g2, g3 are renormalized to 0, whereas g4 → g∗

4 , and g5 → g∗
5 . The system therefore

flows to a two-component Luttinger liquid fixed point.
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Figure 4. The renormalization group flow with initial conditions (4.3) and y0 = 1. The coupling
constants g1, g2, g3 are renormalized to 0, whereas g4 → g∗

4 , and g5 → g∗
5 . The presence of a

marginal perturbation preserving SU(3) symmetry does not suppress the two-component Luttinger
liquid behaviour. However, by comparing with figure 3, it is seen that it changes the exponents at
the fixed point.

Comparing figures 3 and 4, one can see that the magnitude of the fixed-point values of
g4 and g5 depends on the strength of the marginal SU(3)-symmetric interaction y0. This fact,
combined with the fact that the RG equations are only valid for weak coupling precludes the
use of the RG to give an accurate estimate of K∗

a and K∗
b . However, one can still determine

from the RG equations whether these quantities are larger or smaller than one. Although we
emphasize that these figures should not be given too much stress, we find, using the expressions
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for Ka and Kb as a function of g4 and g5, K∗
a = 1.9 and K∗

b = 1.5, i.e. both are larger than
1. Concerning the question of whether the two-component Luttinger liquid persists at large
coupling, we can remark that the deviation from isotropy in our case makes the interaction
between the SU(3) spins less antiferromagnetic. It is well known that in the case of the XXZ
chain, reducing the antiferromagnetic character of the spin–spin interaction (i.e. working at
Jz < J ) prevents the formation of a gap [51]. Therefore, it seems likely that no gap would
develop in the spectrum. To test our conjecture, numerical work, especially calculation of
K∗
a ,K

∗
b by exact diagonalization, would prove very valuable.

The existence of a two-component Luttinger liquid phase has important consequences. In
particular, it implies a non-zero magnetic susceptibility χ ∝ Kb/ub, and a T -linear specific
heat of the form

C = πT

6ua
+
πT

6ub
. (4.5)

The calculations of the correlation functions and NMR relaxation rate are deferred to
section 5.

5. The strong-magnetic-field case: the fixed-point Hamiltonian and correlation
functions

5.1. Generic magnetic field

5.1.1. Renormalization group flow under a magnetic field. Until now, we have not taken into
account the terms associated with the magnetic field hb, which can be treated as a perturbation,
having fixed the external magnetic field at hc = (3/2)J⊥. To see whether the flow remains
unchanged in this case, let us reobtain the renormalization group equations with finite h.
The simplest way to address this problem is to perform a Legendre transformation [52]
on the Hamiltonian (3.23). The non-zero average value of the field φb due to the finite
magnetization can be eliminated by a simple shift of the φb-fields, i.e. φb = φb − πmbx,
where mb = −〈∂xφb〉/π . One has the following relation between mb and the magnetization:

mb = −
√

3

2

( 〈Sz〉
a

− 5

6a

)
. (5.1)

The cosine terms, however, are not invariant under this shift and the renormalization group
equations (4.1) for the couplings g1, g2, and g3, for a change of the length scale a → ela, now
become (the details of the calculation can be found in appendix C)

dy1

dl
= 2y1y4 − y2

2J0(πmb(l)a
√

3)/2

dy2

dl
= ( 1

2y4 + 3
2y5)y2 − y1y2J0

(
πmb(l)a

√
3

2

)/
2

dy4

dl
= y2

1/2 + y2
2J0

(
πmb(l)a

√
3

2

)/
4

dy5

dl
= 3

4y
2
2J0

(
πmb(l)a

√
3

2

)
(5.2)

where J0 is the Bessel function that results from the use of a sharp cut-off in real space. One also
hasmb(l) = mb(0)el . One can check that on settingmb(0) = 0 one recovers equations (4.1). If
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the RG equation for the magnetization is trivial, the magnetic field, on the other hand, satisfies
a non-trivial RG equation:

dhb
dl

= hb +

√
3

a
√

8
y2

2J1(π
√

6mb(l)a). (5.3)

Let us discuss qualitatively the physics predicted by equations (5.2). One sees rather
easily that formb(l)a � 1, the Bessel functions tend to zero, so one is left with a sine–Gordon
renormalization group equation for y1, y4. Compared to the case of zero magnetization, we
see that y4 is more negative and y1 is smaller in absolute value. Therefore, we expect that
y1 will be even more irrelevant in the presence of the finite magnetization. We conclude that
the presence of a non-zero magnetization does not affect the two-component Luttinger liquid
behaviour. The crossover scale can be roughly estimated as

l< � ln

(
vF

mba

)
. (5.4)

At this crossover scale, the flow of y5 is completely cut. This implies a variation of Ka,Kb

with the magnetization.
At the value of l given by (5.4) the magnetic energy is of the order of energy cut-

off; therefore the magnetic field term cannot be treated as a perturbation. When the initial
magnetization goes to infinity the renormalization is stopped for smaller and smaller l. The
coupling constants g1, g2, g3 then become zero, while g4, g5 assume the values that they have
at the scale l∗. Returning to the Hamiltonian (3.23), we see that it becomes a quadratic
Hamiltonian.

5.1.2. The fixed-point Hamiltonian. Following the preceding discussion, we conclude that
the asymptotic behaviour of the three-chain system under a magnetic field is governed by the
Hamiltonian

H< =
∫

dx

2π
vF

[
(π6a)

2 + (∂xφa)
2 + (π6b)

2 + (∂xφ̃b)
2
]

+
g∗

4

π2

∫
dx (∂xφa)

2 +
g∗

5

π2

∫
dx (∂xφb)

2

where g∗
4,5 are functions of the magnetic field. The field φ̃b is related to φb in the following

way:

φb = φ̃b + π

(
m− 5

6a

)√
3

2
x (5.5)

while the dual fields θa and θb are not shifted. This condition guarantees that φ̃b satisfies
periodic boundary conditions.

The fixed-point Hamiltonian can be rewritten as

H< =
∫

dx

2π

[
u∗
aK

∗
a (π6a)

2 +
u∗
a

K∗
a

(∂xφa)
2

]
+
∫

dx

2π

[
u∗
bK

∗
b (π6b)

2 +
u∗
b

K∗
b

(∂xφ̃b)
2

]
(5.6)

where u∗
i K

∗
i = vF ; i = a, b, and u∗

a,b/K
∗
a,b = vF + 2g∗

4,5/π . Both the velocities of the
excitations, ui , and the compactification radii, Ki , depend on the magnetic field h through
g<i (h). Therefore, the low-energy properties of the system are described by two decoupled
c = 1 conformal field theories with velocities and compactification radii depending on the
applied magnetic field.

This is valid at the level of perturbation theory for the spin sector of the SU(3) Hubbard
model. However, we are actually interested in the SU(3) anisotropic spin chain for which
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perturbation theory does not apply. In the latter case, we expect, relying on the continuity
between the weak- and the strong-coupling regime, the anisotropic SU(3) spin chain under
magnetic field to also be described by a two-component Luttinger liquid. However, the
velocities and compactification radii cannot be obtained by perturbation theory techniques.
Nevertheless, it is known that the velocities and compactification radii can be obtained
by calculating only thermodynamic quantities using, for instance, exact-diagonalization
techniques [39, 40]. The problem of the determination of these exponents in terms of
measurable thermodynamic quantities in the specific case of the anisotropic SU(3) spin chain
will be discussed in appendix D. The knowledge of the exponents then permits the calculation
of the correlation functions. This is the subject of the next section.

5.1.3. Correlation functions. In this section, we want to calculate the three Matsubara
correlation functions

χzz(x, τ ) = 〈TτSz(x, τ )Sz(0, 0)〉 (5.7)

χ+−,p(x, τ ) = 〈TτS+
p(x, τ )S

−
p (0, 0)〉 (5.8)

χzz,p(x, τ ) = 〈TτSzp(x, τ )Szp(0, 0)〉 (5.9)

wherep = 1, 2, 3 is a chain index. The first correlation function is useful for neutron scattering
experiments, whereas the correlation functions (5.8) are useful for the calculation of NMR
relaxation rates. The Matsubara correlation functions in Fourier space are given by

χij (q, ωn, T ) =
∫ β

0
dτ dx ei(ωnτ−qx)〈Tτ [Si(x, τ ), Sj (0, 0)]〉T (5.10)

from which the finite-temperature correlations are obtained by the analytic continuation
iωn → ω + i0+. We will first concentrate on the T = 0 calculation, then explain how to
extend the calculation to finite temperature.

We begin with the calculation of χzz. Using equation (2.9) we have

χzz = 1

3
〈Tτ18(x, τ )18(0, 0)〉 + (〈Sz〉)2. (5.11)

Using the bosonized expressions for the SU(3) spins, equation (A.12), and the usual
expression for the bosonized correlation functions [53], we obtain†

χzz = (〈Sz〉)2 +
Kb

3π2

(ubτ )
2 − x2

(x2 + (ubτ )2)2

+
ei(2πx/(3a)−π [m−5/(6a)])x

6(πa)2

(
a2

x2 + (uaτ )2

)Ka/6( a2

x2 + (ubτ )2

)Kb/2

+
ei(2πx/(3a)+2π [m−5/(6a)])x

3(πa)2

(
a2

x2 + (ubτ )2

)2Kb/3

+ c.c. (5.12)

where m = 〈Sz〉/a.
Turning to χ+−,p, it is easily seen using equation (2.8) that it is independent of p and

equal to

χ+−,p(x, τ ) = 1

12

[〈Tτ (11 + i12)(x, τ )(11 − i12)(0, 0)〉
+ 〈Tτ (14 + i15)(x, τ )(14 − i15)(0, 0)〉].

† It is important to remark that the correlation functions have been calculated by using the fixed-point Hamiltonian.
This means that there are logarithmic corrections to the expressions that we quote due to asymptotic freedom. Such
logarithmic corrections have been analysed for instance in references [33, 46] for SU(2) spin chains.
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Similarly, χzz,p is independent of p (see equation (2.8)) and the contribution not already
included in χzz is of the form

〈Tτ (16 + i17)(x, τ )(16 − i17)(0, 0)〉. (5.13)

The expressions for the required correlators are obtained as

〈Tτ (1n + i1n+1)(x, τ )(1n − i1n+1)(0, 0)〉
= 2

(πa)2

[(
a2

x2 + (uaτ )2

)νn,1( a2

x2 + (ubτ )2

)νn,2
cos(Qnx +.n(τ/x))

+

(
a2

x2 + (uaτ )2

)ηn,1( a2

x2 + (ubτ )2

)ηn,2
cos

(
2π

3a
+Q′

nx +Bn(τ/x)

)]
(5.14)

where n = 1, 4, 6. The exponents are given by

ν1,1 = 1

2Ka

+
Ka

2
ν1,2 = 0 (5.15)

η1,1 = 1

2Ka

η1,2 = Kb

6
(5.16)

ν4,1 = ν6,1 = 1

8Ka

+
Ka

8
ν4,2 = ν6,2 = 3

8Kb

+
3Kb

8
(5.17)

η4,1 = η6,1 = 1

8Ka

+
Ka

8
η4,2 = η6,2 = 3

8Kb

+
Kb

24
. (5.18)

It can be checked that for ua = ub, Ka = Kb = 1, one recovers the exponents of the isotropic
SU(3) spin chain [29], namely νn,1 + νn,2 = 1 and ηn,1 + ηn,2 = 2/3. One also has

Q1 = 0 Q′
1 = −π

(
m− 5

6a

)

Q4 = 3

2
Q′

1 = −Q6 Q′
4 = −Q

′
1

2
= −Q′

6.

(5.19)

Recall that 〈Sz〉 = 5/6 +
√

2/3mb. This allows the determination of all incommensurate
modes. Finally, we have the functions

.1

(
τ

x

)
= 2 arctan

(
uaτ

x

)

B1

(
τ

x

)
= 0

.4

(
τ

x

)
= .6

(
τ

x

)
= 1

2
arctan

(
uaτ

x

)
+

3

2
arctan

(
ubτ

x

)

B4

(
τ

x

)
= −B6

(
τ

x

)
= 1

2

[
arctan

(
uaτ

x

)
− arctan

(
ubτ

x

)]
.

(5.20)

All the preceding results are valid only at T = 0. However, it is useful also to calculate the
correlation functions forT > 0, in particular in order to obtain NMR relaxation rates. To obtain
the finite-temperature Matsubara correlation functions, we can use a conformal transformation
since we have two decoupled c = 1 conformal field theories. The explicit expression for this
transformation is

x + iuiτ → βui sinh

(
2π(x + iuiτ )

βui

)
(5.21)
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where i = a, b. Therefore, to obtain† the finite-temperature Matsubara correlation functions,
one has to make the substitutions

x2 + (uiτ )
2 → (βui)

2

[
cosh2

(
2πx

βui

)
− cos2

(
2πτ

β

)]

arctan

(
uiτ

x

)
→ arctan

(
tan(2πτ/β)

tanh(2πx/(βui))

)
.

(5.22)

With the help of the above results for the spin–spin correlation functions, we can evaluate
the T -dependence of the NMR longitudinal relaxation rate T1:

1

T1
∝ lim

ωn→0

∫ β

0
dτ eiωnτ 〈TτS+

p(0, τ )S
−
p (0, 0)〉T . (5.23)

We find
1

T1
∝ (

aT 1/(2Ka)+Ka/2−1 + bT 1/(2Ka)+Kb/6 + cT (3Ka+Kb)/24+1/(8Ka)+3/(8Kb)−1

+ dT 1/(8Ka)+3/(8Kb)+(3Kb+Ka)/8−1
)
.

The low-temperature exponent is the smallest of the four exponents above.

5.1.4. Comparison with a spin-1 chain with biquadratic coupling. In the case of a bilinear
biquadratic spin-1 chain defined by the Hamiltonian

H = J
∑
i

�Si · �Si+1 + β(�Si · �Si+1)
2 (5.24)

close to the Uimin–Lai–Sutherland point (β � 1), a mapping onto an anisotropic SU(3) spin
chain is also possible [20]. However, there are important differences. First, the expression for
the spin operators in terms of the Gell-Mann matrices is different from the ones obtained in
the spin-tube case. For the spin-1 case, one has

Sxn =
√

2

2
(λ4
n + λ6

n)

Syn =
√

2

2
(λ5
n − λ7

n)

Szn = λ3
n.

(5.25)

These expressions should be contrasted with equations (2.8) and (2.9).
Although expressions (5.25) lead to incommensurate modes, the expressions for the

correlation functions are different from the case for the spin tube. Second, the expression
for the Hamiltonian in terms of λ-matrices in the spin-1 case is different from expression
(2.17). That is, the Hamiltonian (5.24) can be rewritten in terms of Gell-Mann matrices as

H =
∑
i

[
β

2
(λ8
i λ

8
i+1 + λ1

i λ
1
i+1 + λ2

i λ
2
i+1) +

(
1 − β

2

)
λ3
i λ

3
i+1

+
1

2
(λ4
i λ

4
i+1 + λ5

i λ
5
i+1 + λ6

i λ
6
i+1 + λ7

i λ
7
i+1)

+
1 − β

2
(λ4
i λ

6
i+1 + λ6

i λ
4
i+1 − λ5

i λ
7
i+1 − λ7

i λ
5
i+1)

]
. (5.26)

† The conformal transformation was carried out right at the fixed point. For a system that does not sit exactly at the
fixed point, there would be corrections coming from the irrelevant operators. This is the finite-temperature counterpart
of the logarithmic corrections that are obtained at T = 0.
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Finally, for β < 1 the spin-1 bilinear biquadratic chain has a gap and the two-component
Luttinger liquid can only be observed for a large enough applied magnetic field.

Nevertheless, the two problems have in common the presence of a gapless two-component
Luttinger liquid ground state [20], and the formation of incommensurate modes under a
magnetic field, so loosely speaking they belong to the same universality class. This can be
understood as a consequence of the fact that both models can be related to anisotropic SU(3)
spin chains. One should note that the formation of incommensurate modes in the presence of
the magnetic field in the spin tube is not related to the presence of gapped incommensurate
modes in the bilinear–biquadratic spin-1 chain [54]. In the latter case, the incommensurate
modes originate from the fact that in the absence of the biquadratic chain, the (gapped) modes
of the spin-1 chain are at q = 0 and q = π , whereas at the ULS point, the (gapless) modes
are at q = 0 and q = 2π/3. The presence of gapped incommensurate modes between these
two limits is merely a consequence of the continuity of the transition between the Haldane gap
phase and the gapless phase beyond the ULS point. On the other hand, in the presence of the
magnetic field, the gapless modes of the spin tube or those of the spin-1 chain simply move
away from 2π/3, similarly to what happens in a single spin-1/2 chain.

5.2. Is there a magnetization plateau for 〈Sz〉 = 1?

5.2.1. The Umklapp terms and the quantization condition on the magnetization. In the
presence of a magnetic field, one of the central issues is the quantization condition on the
total magnetization 〈Sz〉 for the appearance of plateaus. This condition may be investigated
by looking at the bosonized expression for the spin operators (A.12). After using the trans-
formation (A.7) to take into account a non-zero magnetization, one can rederive an expression
for the non-SU(3)-symmetric perturbations. Contrary to the case for zero magnetization, we
cannot assume a priori that the ‘4kF ’, ‘6kF ’, . . . terms are highly oscillating in some exceptional
cases, since the phase ei 2nkF x may be compensated by a phase arising from the transformation
(A.7) at the special filling (5.5). A systematic investigation indicates that the possible Umklapp
term is originating from the terms λ3

i λ
3
i+1, λ8

i λ
8
i+1 in the Hamiltonian (3.1) and is

cos

(
4

√
2

3
φ̃b + α3

)
. (5.27)

And if we consider the three Umklapp processes from a higher order in the strong-rung-
coupling expansion, we have another operator:

cos(2
√

6φ̃b). (5.28)

The conditions that must be fulfilled for these Umklapp terms to be present are

〈18〉√
3

= −1

6
or

1

3
(5.29)

for the term (5.27) and

〈18〉 = − n√
3

(5.30)

for the term (5.28).
Condition (5.29) reduces to 〈Sz〉 = 1 and condition (5.30) reduces to 〈Sz〉 = 7/6 or

〈Sz〉 = 5/6. At these values of the magnetization the operators (respectively) (5.27) or
(5.28) can in principle open a gap in the excitations of the system leading to a plateau in the
magnetization curve. In agreement with the generalized LSM theorem [7–9], the formation
of such a gap implies a degeneracy of the ground state. This degeneracy is usually associated
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with a breaking of translational symmetry in the ground state. Under the assumption of
broken translational symmetry, for 〈Sz〉 = 1, the ground state has period 2, and in the case of
〈Sz〉 = 5/6, 7/6, it has period 3 [7–9]. For this to happen, at least for the magnetic excitation,
these operators must be relevant to make the magnetization plateau; that is,

Kb < 3/4 (5.31)

for the term (5.27) and

Kb <
1

3
(5.32)

for the term (5.28). According to these equations the presence of a plateau is more likely
at 〈Sz〉 = 1 than at 〈Sz〉 = 7/6. Also we should note that the non-Umklapp sine–Gordon
operator

cos
√

2φa cos
√

6φb (5.33)

can appear only at 〈Sz〉 = 5/6. Let us remark that for 〈Sz〉 = 5/6, the RG analysis of the
previous section showed that no gap would result since Kb > 1.

5.2.2. A theory of the possible plateau at 〈Sz〉 = 1. There seems to be evidence for an extra
plateau at 〈Sz〉 = 1 in the magnetization curve of a 36-site system at J⊥/J = 3 obtained by
DMRG techniques in reference [18] (see figure 10 of reference [18]). However, this small
plateau observed at 〈Sz〉 = 1 in the magnetization curve may also be ascribed to the small
system size [55]. Here, we will investigate in more detail the possibility of such a plateau in
the framework of the bosonized theory. In particular, we will try to give a description of the
behaviour of correlation functions in the system.

Due to the presence of the Umklapp term (5.27) the bosonized Hamiltonian describing
the low-energy excitations of the spin tube at 〈Sz〉 = 1 is

H = Ha +Hb

Ha =
∫

dx
dx

2π

[
uaKa(π6a)

2 +
ua

Ka

(∂xφa)
2

]
+

2g1

(2πa)2

∫
dx cos

√
8φa

Hb =
∫

dx
dx

2π

[
ubKb(π6b)

2 +
ub

Kb

(∂xφb)
2

]
+

2u′a
3(πa)2

∫
dx cos

(
4

√
2

3
φb +

2π

3

)
.

(5.34)

If there is indeed a magnetization plateau at 〈Sz〉 = 1, a gap opens in the excitation spectrum
of the field φb. However, the Hamiltonian contains no terms coupling φa and φb, so φa could
remain ungapped. This would lead to a single-component Luttinger liquid behaviour on this
plateau, and a power-law decay of some spin–spin correlation functions. Since u′ < 0, the
Umklapp term would impose√

2

3
〈φ̃b〉 = −2π

3
.

If this is so, careful treatment of the expressions (A.12) of the bosonized forms of the 1
operators is necessary when we have a gap, on the 〈Sz〉 = 1 plateau. To eliminate gapped
states completely, one can use the following expression (see appendix A):

18
i = 1√

3
(1 − 3c†

i,3ci,3) (5.35)
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for Szi instead of (3.12). Here we use the constraint (3.11). This equation indicates that we
have only the gapful excitations φb in 18(x). One has

(11 + i12)(x) = ei
√

2θa

πa

[
2 cos

√
2φa + 2C1 cos

(
π

2a
x +

π

6

)]

18(x) = 3

πa
√

3
ei(π/a)xC2

(5.36)

where

C1 = 〈ei
√

2/3(φ̃b−〈φ̃b〉)〉
C2 = 〈ei 2

√
2/3(φ̃b−〈φ̃b〉)〉.

(5.37)

We do not give the expressions for the other operators since they show exponential decay
except for13, which never enters the spin-correlation function. We find then that translational
symmetry is broken on the 〈Sz〉 = 1 plateau, with a period of 2 for the ground state.

This is in agreement with the LSM theorem that rules out a non-degenerate ground state
if there is a magnetization plateau at 〈Sz〉 = 1. The period that we obtain is in agreement with
the LSM theorem if we assume that the degeneracy of the ground state results from a broken
translational symmetry [7–9]. We also see that an additional period of 4 will appear in the
correlation functions showing a power-law decay. The correlation function for the operators
of equation (5.36) is

〈Tτ (11 + i12)(x, τ )(11 − i12)(x ′, 0)〉
= 1

(πa)2

[
2C2

1

{(
1 +

1

2
eiπx ′/a

)
cos

[
π

2a
(x − x ′)

]

−
√

3

2
eiπx ′/a sin

[
π

2a
(x − x ′)

]}(
a2

(x − x ′)2 + (u∗
aτ )

2

)1/(2Ka)

−
(

a2

(x − x ′)2 + (u∗
aτ )

2

)Ka/2+1/(2Ka) (x − x ′)2 − (u∗
aτ )

2

(x − x ′)2 + (u∗
aτ )

2

]
.

Using expressions (2.8) and (2.9) for the spins in terms of λ-matrices, we find that the
correlations 〈S+

nS
−
n′ 〉 show an exponential decay whereas the correlations 〈Szn,pSzn′,p〉 follow a

power-law decay. We have the following expressions for the equal-time spin–spin correlation
functions:

〈Szn〉 = 1 − C2

π
eiπn

〈Szn,pSzn′,p〉 − 〈Szn,p〉〈Szn′,p〉 = 2

9
〈(11

n + i12
n)(1

1
n′ − i12

n′)〉.
(5.38)

Comparing with figures 6 and 7 of reference [18], one sees that such behaviour is not
obtained in numerical calculations. This leaves two options: one is that the system size (36
sites) in reference [18] is too small for observing the finite but large correlation length. This
is not unreasonable, since Kb could be only slightly smaller than 3/4. The second possibility
is that the plateau at 〈Sz〉 = 1 is an artifact of the small system size. In section 5.2.3 it will
be shown using the DMRG for systems of up to 120 sites that it is the latter possibility that
applies.

If we wish to obtain non-trivial plateaus, smaller values of Luttinger parameters Ka or
Kb are needed. This could be achieved by adding a sufficiently strong antiferromagnetic Ising
term along the chain:

N∑
i=1

3∑
p=1

Szi,pS
z
i+1,p (5.39)
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or an extra coupling:
N∑
i=1

3∑
p=1

3∑
q=1

�Si,p · �Si+1,q . (5.40)

The extra plateaus would lie at 〈Sz〉 = 5/6, 1, 7/6 and are allowed by an extended LSM
theorem in the case of a degenerate ground state with broken translational symmetry.

5.2.3. Study of the presence of a magnetization plateau at 〈Sz〉 = 1 by finite-size scaling
of DMRG results. We continue the density-matrix renormalization group [13, 14] study of
the three-leg ladder at m = 〈Sz〉 = 1 of Tandon et al [18]. Their results for finite chain
length show that there might be a plateau at m = 1 but the system size is too small to draw
definitive conclusions [55]. In this section, we show that the apparent plateau at m = 1 is
indeed a finite-size artifact. In finite-size study, there is a finite energy gap between any two
non-degenerate energy levels. We therefore use 1/N scaling to show that the energy gap
scales to zero in the thermodynamic limit for low-energy excitations with %Stot,z = 0 and
%Stot,z = 2, respectively.

In our DMRG calculations we used periodic boundary conditions for the rung and open
boundary conditions for the other direction—the i-direction in equation (2.1). With DMRG
theory, we have gone up to 120 sites (chain lengthN = 40). The number of dominant density-
matrix eigenstates, corresponding to the n largest eigenvalues of the density matrix, that we
retained at each DMRG iteration was n = 200 with the biggest truncation error 10−6. A
few details of our DMRG procedure are worth mentioning here. For a system with length
N , a given value of the magnetization per rung, m, corresponds to a sector with total spin Sz

equal toM = mN . Using the infinite-system algorithm, we found the lowest energy states for
Sz = M − 2, M − 1, M , M + 1, M + 2 and denoted the lowest energy in each Sz-sector as
E0(Sz) and the second-lowest energy as E1(Sz). Since the total Sz is a good quantum number,
it is more convenient to do numerical computations without including the magnetic field. Thus
we have set h = 0 in equation (2.1) and used J⊥/J = 10 to calculate E0(Sz) and E1(Sz).
We have looked for a plateau at m = 1, and for each N we have calculated the %Stot,z = 0
gap as E1(Sz) − E0(Sz), and the %Stot,z = 2 gap as E0(Sz − 2) + E0(Sz + 2) − 2E0(Sz). In
figure 5 we have plotted%Stot,z = 0 versus 1/N and%Stot,z = 2 versus 1/N at magnetization
Sz = N . The fittings to the second order of 1/N in the figure show that the gaps scale to
zero in the forms E1(Sz) − E0(Sz) ∼ 1/N and E0(Sz + 2) + E0(Sz − 2) − 2E0(Sz) ∼ 1/N
when N → ∞. Since there is no gap either in %Stot,z = 0 or in %Stot,z = 2 excitations, we
deduce that the system is not dimerized, and that there is no plateau at m = 1. We can see
the zero-gap excitations also by analysing the spectrum. Around m = 1 at length N and total
spin Sz, we will have 3N/2 − Sz doublets given in equation (2.3). When 3N/2 − Sz is odd,
the ground state is doubly degenerate due to the permutation symmetry of the two kinds of
doublet, and the two ground states have parity − with respect to the i → N + 1 − i reflection
symmetry. When 3N/2 − Sz is even, the ground state is unique, but such unique ground
states for N and for N + 4 have different reflection parities. This suggests that there is no gap.
There is no such parity change from N to N + 4 for ground states of gapped translationally
invariant systems or dimerized systems. This supports the basic picture in previous sections:
when we increase or decrease Sz, we put in or take out gapless quasiparticles (doublets here);
these gapless quasiparticles have different parities at different energy levels. These parities
and degeneracies can be obtained by further detailed analysis of the low-energy excitations of
the Luttinger liquid [56].

To obtain numerically the non-trivial plateaus, we need smaller values of the Luttinger
parametersKa orKb. If we add a sufficiently strong Ising term along the chain direction (in J ),
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Figure 5. Gap scalings for periodic rung conditions at magnetization m = 1 and coupling
J⊥/J = 10. An XXX coupling along the chain direction is considered. The lowest energies
E0(Sz) and E1(Sz) for each Sz obtained by DMRG techniques are plotted as a %Stot,z = 0 gap
scaling: 10[E1(Sz) − E1(Sz)] versus 1/N ; and as a %Stot,z = 2 gap scaling: E0(Sz + 2) +
E0(Sz − 2) − 2E0(Sz) versus 1/N , with Sz = mN . We have magnified the %Stot,z = 0 gap
by a factor of ten to make the figure clear. The linear fittings are E1(Sz) − E0(Sz) ∼ 1/N and
E0(Sz+2)+E0(Sz−2)−2E0(Sz) ∼ 1/N in the thermodynamic limit. The chain lengths calculated
by DMRG techniques are N = 12, 16, . . ., 40.

the condition is satisfied and we can obtain such plateaus at 〈Sz〉 = 5/6, 1, and 7/6 as we
predicted in previous subsections. These plateaus are allowed by an extended LSM theorem in
the case of a periodic ground state with a certain periodicity, as explained in section 3. DMRG
calculation for 〈Sz〉 = 5/6 and 7/6 requires more technical effort [57]. In future studies,
calculating numerically the Luttinger liquid exponents [58] would be useful to further the
understanding of the three-legged ladder. In this section we study the magnetization plateau
atm = 〈Sz〉 = 1 for strongXXZ couplings in the chain direction. It bears out our predictions
for the magnetization plateau at m = 1 made in previous sections.

In the following DMRG calculations we have used an XXZ coupling along the chain
direction given by Jz/J = 6 and still used J⊥/J = 10. In figure 6 we have plotted the
%Stot,z = 0 and the %Stot,z = 2 gaps versus 1/N at m = 1 and for periodic rung conditions.
The fittings to the second order of 1/N in the figure show that the %Stot,z = 0 gap scales to
zero in the form E1(Sz) − E0(Sz) ∼ 1/N while the %Stot,z = 2 gap scales to a finite value
when N → ∞. So the magnetization plateau appears at m = 1 for periodic rung conditions
and strongXXZ coupling in the chain direction. In order to make a comparison, we have also
analysed the case of open rung conditions with the same Jz/J, J⊥/J . For m = 1 we have
plotted E1(Sz) − E0(Sz) versus 1/N and E0(Sz − 2) + E0(Sz + 2) − 2E0(Sz) versus 1/N in
figure 7. The fittings in the figure show that the %Stot,z = 0 gap scales to zero exponentially
and the %Stot,z = 2 gap scales to a finite value when N → ∞. So the magnetization plateau
also appears for open rung conditions and strong XXZ coupling in the chain direction. It is
thus not connected with the presence of frustrating boundary conditions, unlike the m = 0
plateau [9, 15, 18, 53].

6. Conclusions

In this paper, we have analysed the strong-coupling limit of the three-chain system with periodic
boundary conditions in the presence of a magnetic field, using a mapping onto an anisotropic
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Figure 6. Gap scalings for periodic rung conditions at magnetization m = 1 for the coupling
J⊥/J = 10 and theXXZ coupling along the chain direction Jz/J = 6. The lowest energiesE0(Sz)

and E1(Sz) for each Sz obtained by DMRG techniques are plotted as a %Stot,z = 0 gap scaling:
5[E1(Sz)−E1(Sz)] versus 1/N ; and as a%Stot,z = 2 gap scaling: E0(Sz+2)+E0(Sz−2)−2E0(Sz)

versus 1/N , with Sz = mN . We have magnified the%Stot,z = 0 gap by a factor of five to make the
figure clear. The linear fittings areE1(Sz)−E0(Sz) ∼ 1/N andE0(Sz+2)+E0(Sz−2)−2E0(Sz) ∼
% in the thermodynamic limit. The chain lengths calculated by DMRG techniques are N = 12,
16, . . ., 40.

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1

ga
p 

an
d 

ex
ci

ta
tio

n 
en

er
gy

1 / N

E0(mN+2)+E0(mN-2)-2E0(mN)
10[E1(mN)-E0(mN)]

4.8 exp(-N/22)
2+56.7/N-99/N^2

Figure 7. Gap scalings for open rung conditions at magnetization m = 1 for the coupling
J⊥/J = 10 and the XXZ coupling along the chain direction Jz/J = 6. The lowest energies
E0(Sz) and E1(Sz) for each Sz obtained by DMRG techniques are plotted as a %Stot,z = 0 gap
scaling: 10[E1(Sz) − E1(Sz)] versus 1/N ; and as a %Stot,z = 2 gap scaling: E0(Sz + 2) +
E0(Sz − 2) − 2E0(Sz) versus 1/N , with Sz = mN . We have magnified the %Stot,z = 0 gap
by a factor of ten to make the figure clear. The fittings are E1(Sz) − E0(Sz) ∼ exp(−N/ξ) and
E0(Sz + 2)+E0(Sz − 2)− 2E0(Sz) ∼ % in the thermodynamic limit. The chain lengths calculated
by DMRG techniques are N = 12, 16, . . ., 40.

SU(3) chain. A straightforward extension of the LSM theorem allowed us to locate the possible
magnetization plateaus. Then, we applied bosonization and renormalization group techniques
to show that for 1/2 < m < 3/2, the system would be described by a two-component Luttinger
liquid. This allowed us to obtain the spin–spin correlation functions of the system, and to follow
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the positions of the various incommensurate modes in the spin–spin correlation function as
a function of the magnetization. Finally, we have predicted the temperature dependence of
the NMR relaxation rate in this region. We also considered the evidence for a magnetization
plateau at m = 1 in the framework of our bosonized description, and concluded that if such a
plateau exists, the ground state atm = 1 should break translational symmetry with a period of
two lattice spacings. We obtained the correlation functions of such a ground state as well as the
average value of the magnetization at each site, and found that if such a plateau does exist the
ground state would exhibit some kind of antiferromagnetic order. The numerical simulation
of reference [18] shows no evidence for such antiferromagnetic order, thus pointing to an
absence of any plateau at m = 1. To clarify whether or not there is a plateau at m = 1, we
calculated the energy gap aroundm = 1 using the DMRG method and fitted the data to a linear
function of the inverse system size. No gap was found in the thermodynamic limit; therefore,
we conclude that there is no plateau at m = 1. To observe a non-trivial plateau at m = 1, we
proposed modified ladder models. Adding a strong Ising term, we showed a plateau at this
magnetization by DMRG techniques both for PBC and for OBC.

One obvious direction in which to extend our work is to calculate numerically the Luttinger
liquid exponents of the three-chain ladder with periodic boundary conditions. In appendix D,
indications can be found as to how these exponents could in principle be extracted. Finally,
a generalization of the present analysis for N -odd cylindrically coupled S = 1/2 chains is
important as well. Preliminary results show that a description of the low-energy effective
Hamiltonian in terms of an anisotropic SU(3) spin chain still holds, expanding the result of a
two-component Luttinger liquid to a more general context.
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Appendix A. Abelian bosonization of the SU(3) Hubbard model

In this section, we apply Abelian bosonization to the SU(3) Hubbard model:

Hh = −t
∑
i,n

[c†
i,nci+1,n + h.c.] +

U

2

∑
i,n �=m

ni,nni,m. (A.1)

In the strong-coupling limit, the Hubbard Hamiltonian with one fermion per site projected
onto the low-energy states becomes simply the Heisenberg Hamiltonian, as can be seen [41]
by considering perturbation theory in the hopping term forU � t . Only second-order perturb-
ation theory survives and the effective Heisenberg coupling is J = t2/U .

In the continuum limit, in terms of the right- and left-moving fermions introduced in
section 3, the free Hamiltonian Ht can be rewritten as

Ht = −iv
∫

dx
∑
n

(ψ
†
R,n ∂xψR,n − ψ

†
L,n ∂xψLn) (A.2)

where v = 2ta sin(kF a) is the Fermi velocity. In the following, we are working at a filling of
one fermion per site. This implies kF = π/(3a) and vF = √

3ta.
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Using the standard language of Abelian bosonization [36] we express ψR (L)n in terms of
the Bose fields φn and their duals θn, for each flavour n = 1, 2, 3:

ψRn(x) = 1√
2πa

ei(θn(x)+φn(x))ηRn

ψLn(x) = 1√
2πa

ei(θn(x)−φn(x))ηLn
(A.3)

where ηR (L)n are the Klein factors ensuring the proper anticommutation relations among
fermion operators [53]. One has: π6n(x) = ∂xθn and [φn(x),6m(x

′)] = iδn,mδ(x − x ′).
The non-interacting Hamiltonian is straightforwardly rewritten as

Ht =
3∑
n=1

v

∫
dx

2π

[
(π6n)

2 + (∂xφn)
2
]

(A.4)

and the fermion densities as

ρn(x) = −∂xφn
π

+
e−2ikF x

2πa
e2iφn +

e2ikF x

2πa
e−2iφn (A.5)

where kF = π/(3a).
The Hubbard interaction

V = (Ua/2)
∑
n�=m

∫
dx ρn(x)ρm(x)

is rewritten in terms of the fields φn:

V =
∫

dx
∑
n�=m

U

π2
∂xφm ∂xφm +

2U

(2πa)2
cos 2(φn − φm). (A.6)

Instead of working with fields φ1, φ2, φ3 it is convenient [41] to introduce the trans-
formation (

φ1

φ2

φ3

)
=
( 1/

√
3 1/

√
2 1/

√
6

1/
√

3 −1/
√

2 1/
√

6
1/

√
3 0 −2/

√
6

)(
φc
φa
φb

)
(A.7)

and similarly for the conjugate fields. The field φc describes the charge excitations, whereas
the fields φa,b describe the SU(3) spin excitations. We recover in particular the fact that the
SU(3) spin excitations are described by a conformal field theory with C = 2 whereas the
charge excitations have C = 1. The charge and spin sectors of the Hubbard Hamiltonian are
then completely separated:

H = Hc +Hs (A.8)

Hc =
∫

dx

2π

[
ucKc(π6c)

2 +
uc

Kc

(∂xφc)
2

]
(A.9)

Hs =
∑
i=a,b

∫
dx

2π

[
usKs(π6i)

2 +
us

Ks

(∂xφi)
2

]

+
2g

(2πa)2

∫
dx

[
cos(

√
8φa) + cos

√
2(φa +

√
3φb) + cos

√
2(φa −

√
3φb)

]
(A.10)

where

ucKc = vF
uc

Kc

= vF +
2Ua

π

usKs = vF
us

Ks

= vF − Ua

π
g = Ua.

(A.11)
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Note that the Hamiltonian describing the charge modes contains no Umklapp term that could
lead to a gap opening. This is due to the fact that equation (A.5) has been truncated at the 2kF
harmonic. In a more complete expression [59], higher harmonics would appear and would give
a higher-order 6kF Umklapp term. This Umklapp term can also be derived by perturbation
theory [41]. This Umklapp term is of the form cos 2

√
3φc and is irrelevant for U/t � 1.

This is confirmed by numerical simulations [41] which show that the charge gap in an SU(3)
Hubbard model open only for U > 2.2t . When considering RG equations (see section 3) we
shall see that in the spin sector, forU initially positive,Ks renormalizes to 1 and g renormalizes
to 0. This implies that the spin sector of the SU(3) Hubbard is described by aC = 2 conformal
field theory perturbed by a marginally irrelevant operator [29, 41].

Of course, we also need a bosonized expression for the SU(3) spin operators. This can
be derived from the continuum limit of the definition (3.12) of these operators; recall that
1α(x) � a−11α

i , x = ia (α = 1, . . . , 8). We obtain

11(x) = cos
√

2θa
πa

[
2 cos

√
2φa + ei[2π/(3a)]xe−2iφb/

√
6 + e−i[2π/(3a)]xe2iφb/

√
6
]

12(x) = sin
√

2θa
πa

[
2 cos

√
2φa + ei[2π/(3a)]xe−2iφb/

√
6 + e−i[2π/(3a)]xe2iφb/

√
6
]

13(x) = −
√

2

π
∂xφa +

[
i

πa
ei[2π/(3a)]xe−2iφb/

√
6 sin

√
2φa + h.c.

]

14(x) = 1

πa
cos

(
θa√

2
+

√
3

2
θb

)

×
[

2 cos

(
φa/

√
2 +

√
3

2
φb

)
+ ei[2π/(3a)]xei(φa/

√
2−φb/

√
6) + h.c.

]

15(x) = 1

πa
sin

(
θa√

2
+

√
3

2
θb

)

×
[

2 cos

(
φa/

√
2 +

√
3

2
φb

)
+ ei[2π/(3a)]xei(φa/

√
2−φb/

√
6) + h.c.

]

16(x) = 1

πa
cos

(
θa√

2
−
√

3

2
θb

)

×
[

2 cos

(
φa/

√
2 −

√
3

2
φb

)
+ ei[2π/(3a)]xei(φa/

√
2+φb/

√
6) + h.c.

]

17(x) = 1

πa
sin

(
θa√

2
−
√

3

2
θb

)

×
[

2 cos

(
φa/

√
2 −

√
3

2
φb

)
+ ei[2π/(3a)]xei(φa/

√
2+φb/

√
6) + h.c.

]

18(x) = −
√

2

π
∂xφb +

ei[2π/(3a)]x

π
√

3a

[
e−i

√
2/3φb cos

√
2φa − ei

√
8/3φb

]
+ h.c.

(A.12)

where 1α(x) = 1α
n/a for x = na. Using these expressions, one can derive immediately

the expressions (3.20)–(3.22). In the limit U → ∞, one must note that the expression for
18(x) has to be modified. The reason for this is the following: for U → ∞, one has
c

†
1c1 + c†

2c2 + c†
3c3 = 1 for each site. As a result, λ8 = (c

†
1c1 + c†

2c2 − 2c†
3c3)/

√
3 can be

rewritten as λ8 = (1 − 3c†
3c3)/

√
3. Using bosonized expressions, one obtains

18(x) = −
√

2

π
∂xφb −

√
3

2πa

[
ei[2π/(3a)]xei

√
8/3φb + h.c.

]
. (A.13)
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Thus, the terms containing cos
√

2φa drop out of the expression for18(x) in the limitU → ∞.
This means that the SU(3) Hubbard model with a finite charge gap and the SU(3) spin chain
should have in general different correlations for 18. It should be noted that this difference
should not appear at the isotropic point, where the exponents of the correlation functions are
identical. However, it is obtained for models in which the SU(3) rotation symmetry is broken.

Appendix B. Operator product expansion of marginal operators

In this section, our aim is to derive the OPE for operators of the form cos(
√

8�α · �φ), and deduce
the renormalization group equations.

Let us first recall briefly how operator product expansions can be used to obtain one-loop
renormalization group expansions [60]. Assume that we are given a set of operators.k , closed
under the OPE

.i(x, τ ).j (0) ∼
∑
k

ckij (x, τ ).k(0) (B.1)

in the sense that expression (B.1), when inserted in any correlation function, gives the correct
leading asymptotics for (x, τ ) → 0. Denoting as [.i] the scaling dimension of the operator
.i , defined by

〈.i(x, 0).i(0, 0)〉 ∝
(

1

x

)2[.i ]

(B.2)

we have ckij (x, 0) ∼ constant × x[.k ]−[.i ]−[.j ].
Perturbing the Hamiltonian by

HI =
∑
k

∫
dx dτ gk.k(x, τ ) (B.3)

one can deduce the one-loop renormalization group beta functions directly from the OPE (B.1).
These one-loop renormalization group equations are

dgk
dl

≡ βk(g) = (2 − [.k])gk − π
∑
i,j

Ckij gigj (B.4)

where we define

Ckij = a2
∫ 2π

0

dθ

2π
ckij

(
a cos θ,

a

u
sin θ

)
. (B.5)

The equations (B.4) are slight generalizations of those that can be found in reference [60], in
which we have allowed for a function cijk(x, τ ) that depends both on x2 +u2τ 2 and uτ/x. The
set of operators.k has to be closed under the operator product expansion (i.e. they have to form
a closed algebra), otherwise new operators would be generated under the RG, and new OPEs
would have to be derived. We thus need to retain the smallest closed algebra that contains
all the operators that appear in our problem. In our case, we have to retain the operators
cos

√
8�αi · �φ as well as the operators (∂xφa,b)2.

In order to derive the OPE for the cos
√

8�αi · �φ operators, we use the following identity:

ei�α· �φ = e−〈(�α· �φ)2〉/2:ei�α· �φ : (B.6)

where : · · · : represents normal ordering. This identity implies

ei
√

8�α· �φ(x,τ )e−i
√

8�α· �φ(0,0) = e−4〈(�α·[ �φ(x,τ )−�φ(0,0)])2〉:ei
√

8�α·[ �φ(x,τ )−�φ(0,0)]:. (B.7)
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We have

e−4〈(�α·[ �φ(x,τ )−�φ(0,0)])2〉 =
(

a2

x2 + (uτ)2

)2

K. (B.8)

And we can expand the normal-ordered product, yielding

:ei
√

8�α·[ �φ(x,τ )−�φ(0,0)]: = 1 − 4(�α · [x ∂x �φ(0, 0) + τ ∂τ �φ(0, 0)])2. (B.9)

This leads to the OPE (4.1).
Now consider

ei
√

8�α· �φ(x,τ )ei
√

8 �β· �φ(0,0) = e−4〈(�α· �φ(x,τ )+ �β· �φ(0,0))2〉:ei
√

8(�α· �φ(x,τ )+ �β· �φ(0,0)):. (B.10)

Rewriting this as

〈(�α · �φ(x, τ ) + �β · �φ(0, 0))2〉 = 〈((�α + �β) · �φ)2〉 − 2�α · �β(〈φ2(0, 0)− φ(x, τ )φ(0, 0)〉)
(B.11)

we have

ei
√

8�α· �φ(x,τ )ei
√

8 �β· �φ(0,0) =
(

a√
x2 + u2τ 2

)−2K �α· �β
ei

√
8(�α+ �β)· �φ. (B.12)

The OPE for the cosines can be obtained trivially. There is no need to calculate the OPEs
of the operators (∂xφa,b)2 with the operators cos

√
8�αi · �φ. It can be shown that these OPEs

only reflect the dependence of the scaling dimensions of the cosines on Ka,b. Therefore, we
have obtained all the OPEs needed to derive the renormalization group equations. It is then a
simple matter to write the renormalization group equation using the formula (B.4). Following
the procedure described in reference [60], one obtains

dy1

dl
= (2 − 2Ka)y1 − y2y3

2π2

dy2

dl
=
(

2 − Ka

2
− 3

Kb

2

)
y2 − y1y3

2
dy3

dl
=
(

2 − Ka

2
− 3

Kb

2

)
y3 − y1y2

2

d

dl

(
1

Ka

)
= y2

1

2
+
y2

2

8
+
y2

3

8

d

dl

(
1

Kb

)
= 3

y2
2

8
+ 3

y2
3

8

(B.13)

where yi = gi/(πvF ). A few remarks on these equations have to be made. In reference [60],
the OPE depends only on the distance between points. In our case, the OPEs also depend
on the angle between the segment joining the points and the horizontal axis. Since in the
derivation of the RG equations one integrates over the ring a < r < aedl , the angular part of
the integration cancels the terms ∂xφ ∂τφ and gives a π/2 factor for the terms (∂x,τ φ)2. The
second important remark is that in our equations, we are working with y2(0) = y3(0). It can
be checked that this condition is preserved by the RG flow and that under such condition no
terms ∂xφa ∂xφb are generated. Finally, if we expand for small y4, y5, we have Ka = 1 − y4

andKb = 1−y5. Putting this in equations (B.13) we get the renormalization group equations.
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Appendix C. Renormalization group equations in the presence of the external magnetic
field

In the present section, we want to extend the derivation of the renormalization group equations
of appendix B to the case of a non-zero effective magnetic field. As explained in section 5, it is
convenient to first perform a Legendre transformation and work at fixed magnetization. Then,
the RG equation for the magnetization becomes trivial, but the RG equation for the magnetic
field is not. Similarly to the zero-magnetic-field case, the renormalization group equations
can be obtained via operator product expansion. The only difficulty is that the problem is not
a priori translationally invariant.

The relevant operator product expansions are obtained by the method of appendix B. One
has

cos(
√

8�α · [ �φ(x, τ ) + �ux]) cos(
√

8�α · [ �φ(x ′, τ ) + �ux ′])

= a4

(x2 + u2τ 2)2
{−

√
2 sin(

√
8(�u · �α)x)(x ∂x(�α · �φ)− τ ∂τ (�α · �φ))

− 2[(�α · (x ∂x �φ + τ ∂τ �φ))]2 cos(
√

8(�u · �α)x)}. (C.1)

In our case, one must take �u = −πmb(0, 1). The term in τ ∂τ (�α · �φ) disappears upon
angular integration. On the other hand, the term in x ∂x(�α · �φ) leads to a renormalization of
the applied magnetic field. The angular integrations lead in general to Bessel functions.

The second useful OPE is

ei
√

8�α·( �φ(x,τ )+�ux)ei
√

8 �β·( �φ(x ′,0)+�ux ′)

=
(

a√
(x − x ′)2 + u2(τ − τ ′)2

)−2K �α· �β

× ei
√

8(�α+ �β)·( �φ([x+x ′]/2,0)+�u[x+x ′]/2)ei(�α− �β)·�u[x−x ′]/2. (C.2)

These OPEs allow us to deduce the renormalization group equations forKa,Kb, y1, y2, h

in the form

d

dl

(
1

Ka

)
= 1

2
y2

1 +
1

4
y2

2J0

(
πmb(l)

√
3

2
a

)
d

dl

(
1

Kb

)
= 3

4
y2

2J0

(
πmb

√
3

2
a(l)

)
dy1

dl
= (2 − 2Ka)y1 − 1

2
y2

2J0(πmb(l)
√

3a)

dy2

dl
=
(

2 − 1

2
Ka − 3

2
Kb

)
y2 − y1y2J0

(
π

√
3

2
mb(l)a

)
dh

dl
=
√

3

8a
y2

2J1(π
√

6mb(l)a).

(C.3)

Appendix D. Determination of the exponents of the bosonized Hamiltonian

In this section, we discuss the determination of the exponents of the spin tube. We have shown
previously that for weak coupling the model flows to a two-component Luttinger liquid fixed
point. For strong coupling some alternative techniques are needed to determine the Luttinger
liquid exponents from thermodynamic quantities. Note that in the isotropic SU(N) Hubbard
model case [41] with a charge gap, one needs only the spin velocity since the spin exponents
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are constrained by SU(N) invariance. Here, SU(3) symmetry is broken and we expect two
different velocities ua, ub and two exponentsKa,Kb, so we need four independent quantities.

Suppose that we have a two-component Luttinger liquid described by the Hamiltonian

H =
∑
i=a,b

∫
dx

2π

[
uiKi(π6i)

2 +
ui

Ki

(∂xφi)
2

]
. (D.1)

In the case of the spin tube, we can rule out terms of the form 6a6b and ∂xφa ∂xφb since we
know that they are not present in the bare Hamiltonian and not generated by the RG. Moreover,
we know that χ38 = 0 which guarantees the absence of terms of the form ∂xφa ∂xφb in the
Hamiltonian.

The usual technique for determining the Luttinger liquid exponents is considering the
energy change induced by taking π〈6a,b〉 = ϕa,b/L. In terms of the Luttinger liquid
parameters, this energy change is given by

δE = uaKa

2πL
(ϕa)

2 +
ubKb

2πL
(ϕb)

2. (D.2)

This energy change is related to the change of ground-state energy caused by taking twisted
boundary conditions. Let us discuss in more detail these twisted boundary conditions in the
specific case of the spin tube. Using the bosonization formulae, one sees easily that

11 + i12 ∝ ei
√

2θa

14 + i15 ∝ ei(θa/
√

2+
√

2/3θb)

16 + i17 ∝ ei(−θa/
√

2+
√

2/3θb).

(D.3)

Therefore, imposing 〈π6a〉 = ϕa/L and 〈π6b〉 = ϕb/L amounts to imposing the
boundary conditions

(11 + i12)(L) = (11 + i12)(0)ei
√

2ϕa

(14 + i15)(L) = (14 + i15)(0)ei(ϕa/
√

2+
√

2/3ϕb)

(16 + i17)(L) = (16 + i17)(0)ei(
√

2/3ϕb−ϕa/
√

2).

(D.4)

As an aside, one should remark that the transformation 6(x) → 6(x)− f (x) is realized by
the operator

U = exp

(
−i
∫

dx f (x)φ(x)

)
.

This operator can also be written as

U = exp

(
i
∫

dx F(x) ∂xφ(x)

)
where f = dF/dx. Twisted boundary conditions correspond to f (x) = α/L. Therefore, an
operator generating states satisfying boundary conditions (D.4) acting on states satisfying
periodic boundary conditions can be built in the continuum. A lattice version is easily
constructed, giving an operator of the form

U(ϕ) = exp

(
−i

L∑
n=1

(n− 1)

L
(ϕa1

3
n + ϕb1

8
n)

)
. (D.5)

One can check that these lattice operators acting on states that satisfy periodic boundary
conditions generate states that satisfy the boundary conditions (D.4) directly on the lattice.
This guarantees the existence of states satisfying the twisted boundary conditions (D.4). The
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generalization of this construction to the SU(N) case is trivial. Instead of 13,8 one has to
consider the maximal Abelian subalgebra (MASA) and builds the operators corresponding to
U(ϕ). In the case of the spin tube, the energy change of the ground state obeys the condition

LδE(ϕa, ϕb) = LδE(ϕa, 0) + LδE(0, ϕb) + o(ϕ2
a , ϕ

2
b). (D.6)

In order to determine completely ua, ub,Ka,Kb, suppose that one places the anisotropic
SU(3) chain in fields that couple to the 13 and 18 components of the spin:

H =
∑
i

∑
α

aαλ
α
i λ

α
i+1 − h3

∑
i

λ3
i − h8

∑
i

λ8
i . (D.7)

Then, the Hamiltonian becomes in the continuum

H = H0 +
∑
ν=a,b

hν
∂xφν

π
(D.8)

where ha = h3, hb = h8. Then, one has

−〈∂xφν〉
π

= Kν

uν
hν. (D.9)

Thus, one has

〈13〉 = Ka/uah3

〈18〉 = Kb/ubh8.
(D.10)

This is sufficient for extracting the parameters of the two-component Luttinger liquid
associated with the anisotropic SU(3) spin chain. However, we started from three coupled
spin-1/2 chains with periodic boundary conditions. To extract the two-component Luttinger
liquid exponents for this problem, we need to express the preceding formulae in terms of the
original spins. Re-expressing the twisted boundary conditions in terms of the original spins is
elementary if one remembers that when we choose Sz = (5/6 − λ8/

√
3), we have

(λ6 − iλ7)i = 2√
3

∑
p

jp−1S+
i,p

(λ4 − iλ5)i = 2√
3

∑
p

j 2(p−1)S+
i,p

(λ1 − iλ2)i = −1

2

∑
p

j 2(p−1)Szi,p.

(D.11)

The following expression for λ3 can also be obtained:

λ3 = i√
3

(
(S−

2 S
+
1 − S−

2 S
+
1 ) + (S−

3 S
+
2 − S+

3S
−
2 ) + (S−

1 S
+
3 − S+

1S
−
3 )
)
PSz=1/2 (D.12)

where PSz=1/2 is the projector on the subspace Sz = 1/2. Physically, λ3 is proportional to
the spin current in the transverse direction. It is therefore +1 for positive chirality and −1 for
negative chirality. It can also be rewritten as

λ3 = 2√
3

[
(�S2 × �S1)

z + (�S3 × �S2)
z + (�S1 × �S3)

z
]
PSz=1/2. (D.13)

With these expressions, it is in principle possible to obtain numerically the Luttinger liquid
exponents for a general three-leg spin ladder with periodic boundary conditions under a
magnetic field between the 〈Sz〉 = 1/2 and 〈Sz〉 = 3/2 plateaus.
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